21 research outputs found

    Applying time-frequency analysis to assess cerebral autoregulation during hypercapnia.

    Get PDF
    OBJECTIVE: Classic methods for assessing cerebral autoregulation involve a transfer function analysis performed using the Fourier transform to quantify relationship between fluctuations in arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV). This approach usually assumes the signals and the system to be stationary. Such an presumption is restrictive and may lead to unreliable results. The aim of this study is to present an alternative method that accounts for intrinsic non-stationarity of cerebral autoregulation and the signals used for its assessment. METHODS: Continuous recording of CBFV, ABP, ECG, and end-tidal CO2 were performed in 50 young volunteers during normocapnia and hypercapnia. Hypercapnia served as a surrogate of the cerebral autoregulation impairment. Fluctuations in ABP, CBFV, and phase shift between them were tested for stationarity using sphericity based test. The Zhao-Atlas-Marks distribution was utilized to estimate the time-frequency coherence (TFCoh) and phase shift (TFPS) between ABP and CBFV in three frequency ranges: 0.02-0.07 Hz (VLF), 0.07-0.20 Hz (LF), and 0.20-0.35 Hz (HF). TFPS was estimated in regions locally validated by statistically justified value of TFCoh. The comparison of TFPS with spectral phase shift determined using transfer function approach was performed. RESULTS: The hypothesis of stationarity for ABP and CBFV fluctuations and the phase shift was rejected. Reduced TFPS was associated with hypercapnia in the VLF and the LF but not in the HF. Spectral phase shift was also decreased during hypercapnia in the VLF and the LF but increased in the HF. Time-frequency method led to lower dispersion of phase estimates than the spectral method, mainly during normocapnia in the VLF and the LF. CONCLUSION: The time-frequency method performed no worse than the classic one and yet may offer benefits from lower dispersion of phase shift as well as a more in-depth insight into the dynamic nature of cerebral autoregulation

    Frequency-Supported Neural Networks for Nonlinear Dynamical System Identification

    Full text link
    Neural networks are a very general type of model capable of learning various relationships between multiple variables. One example of such relationships, particularly interesting in practice, is the input-output relation of nonlinear systems, which has a multitude of applications. Studying models capable of estimating such relation is a broad discipline with numerous theoretical and practical results. Neural networks are very general, but multiple special cases exist, including convolutional neural networks and recurrent neural networks, which are adjusted for specific applications, which are image and sequence processing respectively. We formulate a hypothesis that adjusting general network structure by incorporating frequency information into it should result in a network specifically well suited to nonlinear system identification. Moreover, we show that it is possible to add this frequency information without the loss of generality from a theoretical perspective. We call this new structure Frequency-Supported Neural Network (FSNN) and empirically investigate its properties

    Low-Dimensional Decompositions for Nonlinear Finite Impulse Response Modeling

    No full text
    This paper proposes a new decomposition technique for the general class of Non-linear Finite Impulse Response (NFIR) systems. Based on the estimates of projection operators, we construct a set of coefficients, sensitive to the separated internal system components with short-term memory, both linear and nonlinear. The proposed technique allows for the internal structure inference in the presence of unknown additive disturbance on the system output and for a class of arbitrary but bounded nonlinear characteristics. The results of numerical experiments, shown and discussed in the paper, indicate applicability of the method for different types of nonlinear characteristics in the system.</p

    Decentralized diffusion-based learning under non-parametric limited prior knowledge

    Full text link
    We study the problem of diffusion-based network learning of a nonlinear phenomenon, mm, from local agents' measurements collected in a noisy environment. For a decentralized network and information spreading merely between directly neighboring nodes, we propose a non-parametric learning algorithm, that avoids raw data exchange and requires only mild \textit{a priori} knowledge about mm. Non-asymptotic estimation error bounds are derived for the proposed method. Its potential applications are illustrated through simulation experiments

    Fractal Dimension as Robust Estimate of Low Carbon Steels Hardness

    No full text
    Application of computational methods in engineering and science constantly increases, which is also visible in sector of material science, often with promising results. In following paper, authors would like to propose fractal dimension, a mathematical method of quantifying self-similarity and complexity of spatial patterns, as robust method of hardness estimation of low carbon steels. A dataset of microstructure images and corresponding Vickers hardness measurements of S235JR steel under different delivery conditions was created. Then, three different computational methods for evaluation of materials hardness based on microstructure image were tested. In this paper those methods are called: (i) Otsu-based index, (ii) fractal dimension index and (iii) vision transformer index. The results were compared with method used in literature for similar problems. Comparison showed that fractal dimension performs better than other evaluated methods, in terms of median absolute error, which value was equal to 4.12 HV1, which is significantly lower than results achieved by Otsu-based index and vision transformer index, which were 4.49 HV1 and 5.07 HV1 respectively. Those results can be attributed to the relative robustness of fractal dimension index, when compared to other methods. Robust estimation is preferable, due to the high amount of noise in the dataset, which is a consequence of the nature of used material

    Assessment of Baroreflex Sensitivity Using Time-Frequency Analysis during Postural Change and Hypercapnia

    No full text
    Baroreflex is a mechanism of short-term neural control responsible for maintaining stable levels of arterial blood pressure (ABP) in an ABP-heart rate negative feedback loop. Its function is assessed by baroreflex sensitivity (BRS)—a parameter which quantifies the relationship between changes in ABP and corresponding changes in heart rate (HR). The effect of postural change as well as the effect of changes in blood O2 and CO2 have been the focus of multiple previous studies on BRS. However, little is known about the influence of the combination of these two factors on dynamic baroreflex response. Furthermore, classical methods used for BRS assessment are based on the assumption of stationarity that may lead to unreliable results in the case of mostly nonstationary cardiovascular signals. Therefore, we aimed to investigate BRS during repeated transitions between squatting and standing in normal end-tidal CO2 (EtCO2) conditions (normocapnia) and conditions of progressively increasing EtCO2 with a decreasing level of O2 (hypercapnia with hypoxia) using joint time and frequency domain (TF) approach to BRS estimation that overcomes the limitation of classical methods. Noninvasive continuous measurements of ABP and EtCO2 were conducted in a group of 40 healthy young volunteers. The time course of BRS was estimated from TF representations of pulse interval variability and systolic pressure variability, their coherence, and phase spectra. The relationship between time-variant BRS and indices of ABP and HR was analyzed during postural change in normocapnia and hypercapnia with hypoxia. In normocapnia, observed trends in all measures were in accordance with previous studies, supporting the validity of presented TF method. Similar but slightly attenuated response to postural change was observed in hypercapnia with hypoxia. Our results show the merits of the nonstationary methods as a tool to study the cardiovascular system during short-term hemodynamic changes

    Low-Dimensional Decompositions for Nonlinear Finite Impulse Response Modeling

    No full text
    This paper proposes a new decomposition technique for the general class of Non-linear Finite Impulse Response (NFIR) systems. Based on the estimates of projection operators, we construct a set of coefficients, sensitive to the separated internal system components with short-term memory, both linear and nonlinear. The proposed technique allows for the internal structure inference in the presence of unknown additive disturbance on the system output and for a class of arbitrary but bounded nonlinear characteristics. The results of numerical experiments, shown and discussed in the paper, indicate applicability of the method for different types of nonlinear characteristics in the system
    corecore